97 research outputs found

    The confined-deconfined interface tension, wetting, and the spectrum of the transfer matrix

    Full text link
    The reduced tension σcd\sigma_{cd} of the interface between the confined and the deconfined phase of SU(3)SU(3) pure gauge theory is determined from numerical simulations of the first transfer matrix eigenvalues. At Tc=1/LtT_c = 1/L_t we find σcd=0.139(4)Tc2\sigma_{cd} = 0.139(4) T_c^2 for Lt=2L_t = 2. The interfaces show universal behavior because the deconfined-deconfined interfaces are completely wet by the confined phase. The critical exponents of complete wetting follow from the analytic interface solutions of a Z(3)\Z(3)-symmetric Φ4\Phi^4 model in three dimensions. We find numerical evidence that the confined-deconfined interface is rough.Comment: Talk presented at the International Conference on Lattice Field Theory, Lattice 92, to be published in the proceedings, 4 pages, 4 figures, figures 2,3,4 appended as postscript files, figure 1 not available as a postscript file but identical with figure 2 of Nucl. Phys. B372 (1992) 703, special style file espcrc2.sty required (available from hep-lat), BUTP-92/4

    Numerical simulation of heavy fermions in an SU(2)_L x SU(2)_R symmetric Yukawa model

    Full text link
    An exploratory numerical study of the influence of heavy fermion doublets on the mass of the Higgs boson is performed in the decoupling limit of a chiral SU(2)L⊗SU(2)R\rm SU(2)_L \otimes SU(2)_R symmetric Yukawa model with mirror fermions. The behaviour of fermion and boson masses is investigated at infinite bare quartic coupling on 43⋅84^3 \cdot 8, 63⋅126^3 \cdot 12 and 83⋅168^3 \cdot 16 lattices. A first estimate of the upper bound on the renormalized quartic coupling as a function of the renormalized Yukawa-coupling is given.Comment: 15 pp + 11 Figures appended as Postscript file

    A Multicanonical Algorithm and the Surface Free Energy in SU(3) Pure Gauge Theory

    Full text link
    We present a multicanonical algorithm for the SU(3) pure gauge theory at the deconfinement phase transition. We measure the tunneling times for lattices of size L^3x2 for L=8,10, and 12. In contrast to the canonical algorithm the tunneling time increases only moderately with L. Finally, we determine the interfacial free energy applying the multicanonical algorithm.Comment: 6 pages, HLRZ-92-3

    The Interface Tension in Quenched QCD at the Critical Temperature

    Full text link
    We present results for the confinement-deconfinement interface tension αcd\alpha_{cd} of quenched QCD. They were obtained by applying Binder's histogram method to lattices of size L2×Lz×LtL^2\times L_z\times L_t for Lt=2L_t=2 and L=8,10,12\mbox{ and }14 with Lz=30L_z=30 for L=8L=8 and Lz=3LL_z=3L otherwise. The use of a multicanonical algorithm and cylindrical geometries have turned out to be crucial for the numerical studies.Comment: (talk presented by B. Grossmann at Lattice 92), 4 pages with 5 figure appended as encapsulated postscript files at the end, preprint HLRZ-92-7

    A Moving Bump in a Continuous Manifold: A Comprehensive Study of the Tracking Dynamics of Continuous Attractor Neural Networks

    Full text link
    Understanding how the dynamics of a neural network is shaped by the network structure, and consequently how the network structure facilitates the functions implemented by the neural system, is at the core of using mathematical models to elucidate brain functions. This study investigates the tracking dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of neuronal recurrent interactions, CANNs can hold a continuous family of stationary states. They form a continuous manifold in which the neural system is neutrally stable. We systematically explore how this property facilitates the tracking performance of a CANN, which is believed to have clear correspondence with brain functions. By using the wave functions of the quantum harmonic oscillator as the basis, we demonstrate how the dynamics of a CANN is decomposed into different motion modes, corresponding to distortions in the amplitude, position, width or skewness of the network state. We then develop a perturbative approach that utilizes the dominating movement of the network's stationary states in the state space. This method allows us to approximate the network dynamics up to an arbitrary accuracy depending on the order of perturbation used. We quantify the distortions of a Gaussian bump during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable and the reaction time for the network to catch up with an abrupt change in the stimulus.Comment: 43 pages, 10 figure

    Mass Spectrum and Bounds on the Couplings in Yukawa Models With Mirror-Fermions

    Full text link
    The SU(2)L⊗SU(2)R\rm SU(2)_L\otimes SU(2)_R symmetric Yukawa model with mirror-fermions in the limit where the mirror-fermion is decoupled is studied both analytically and numerically. The bare scalar self-coupling λ\lambda is fixed at zero and infinity. The phase structure is explored and the relevant phase transition is found to be consistent with a second order one. The fermionic mass spectrum close to that transition is discussed and a first non-perturbative estimate of the influence of fermions on the upper and lower bounds on the renormalized scalar self-coupling is given. Numerical results are confronted with perturbative predictions.Comment: 7 (Latex) page

    The confined-deconfined Interface Tension and the Spectrum of the Transfer Matrix

    Full text link
    The reduced tension σcd\sigma_{cd} of the interface between the confined and the deconfined phase of SU(3)SU(3) pure gauge theory is related to the finite size effects of the first transfer matrix eigenvalues. A lattice simulation of the transfer matrix spectrum at the critical temperature Tc=1/LtT_c = 1/L_t yields σcd=0.139(4)Tc2\sigma_{cd} = 0.139(4) T_c^2 for Lt=2L_t = 2. We found numerical evidence that the deconfined-deconfined domain walls are completely wet by the confined phase, and that the confined-deconfined interfaces are rough.Comment: 22 pages, LaTeX file with 4 ps figures included, HLRZ 92-47, BUTP-92/3

    The Quark-Hadron Phase Transition, QCD Lattice Calculations and Inhomogeneous Big-Bang Nucleosynthesis

    Full text link
    We review recent lattice QCD results for the surface tension at the finite temperature quark-hadron phase transition and discuss their implications on the possible scale of inhomogeneities. In the quenched approximation the average distance between nucleating centers is smaller than the diffusion length of a protron, so that inhomogeneities are washed out by the time nucleosynthesis sets in. Consequently the baryon density fluctuations formed by a QCD phase transition in the early universe cannot significantly affect standard big-bang nucleosynthesis calculations and certainly cannot allow baryons to close the universe. At present lattice results are inconclusive when dynamical fermions are included.Comment: 8 pages, LaTe

    Critical phenomena of thick branes in warped spacetimes

    Get PDF
    We have investigated the effects of a generic bulk first-order phase transition on thick Minkowski branes in warped geometries. As occurs in Euclidean space, when the system is brought near the phase transition an interface separating two ordered phases splits into two interfaces with a disordered phase in between. A remarkable and distinctive feature is that the critical temperature of the phase transition is lowered due to pure geometrical effects. We have studied a variety of critical exponents and the evolution of the transverse-traceless sector of the metric fluctuations.Comment: revtex4, 4 pages, 4 figures, some comments added, typos corrected, published in PR

    Tunneling and the Spectrum of the Potts Model

    Get PDF
    The three-dimensional, three-state Potts model is studied as a paradigm for high temperature quantum chromodynamics. In a high statistics numerical simulation using a Swendson-Wang algorithm, we study cubic lattices of dimension as large as 64364^3 and measure correlation functions on long lattices of dimension 202×12020^2\times 120 and 302×12030^2\times 120. These correlations are controlled by the spectrum of the transfer matrix. This spectrum is studied in the vicinity of the phase transition. The analysis classifies the spectral levels according to an underlying S3S_3 symmetry. Near the phase transition the spectrum agrees nicely with a simple four-component hamiltonian model. In the context of this model, we find that low temperature ordered-ordered interfaces nearly always involve a disordered phase intermediate. We present a new spectral method for determining the surface tension between phases.Comment: 26 pages plus 13 Postscript figures (Axis versions also provided), UU-HEP-92/
    • …
    corecore